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Abstract
Ferromagnetic resonance (FMR) is known to be one of the most informative
techniques to measure basic physical quantities such as magnetic anisotropy
energies, the g tensor in solids or the interlayer exchange coupling Jinter . We
investigate prototype Cu/Ni/Cu/Ni/Cu(001) and Ni/Cu/Co/Cu(001) trilayers as
well as Fen /Vm superlattices. We show for the case of trilayers how in situ
ultrahigh vacuum FMR can be used to determine Jinter in absolute energy units
in a straightforward way: we first prepare and measure the bottom magnetic
layer together with the Cu spacer in situ and then evaporate the second magnetic
film on top. Thus, it is possible to investigate the FMR signal before and after
the two magnetic films become coupled. We discuss results, showing that the
temperature dependence of Jinter follows a T 3/2 law over a wide temperature
range. This indicates that thermally excited spin waves at the interface of
the ferromagnetic layers dominate the temperature dependence of Jinter . The
second part focuses on the measurement of the g value. From the g value,
the ratio of orbital to spin magnetic moment can be obtained via the relation
µL/µS = (g − 2)/2. We show for Fen /Vm superlattices how µL/µS increases
with decreasing Fe-layer thickness.

1. Introduction

Ferromagnetic resonance (FMR) has been a well established technique to determine
anisotropies in ferromagnetic (FM) systems for more than 50 years [1]. The number of
magnetic moments which are still detectable in an FMR experiment is in the order of 1010–
1014 depending on the linewidth of the signal. This corresponds to film thicknesses in the
monolayer range. Due to its sensitivity, FMR has been successfully applied to ultrathin
metallic films [2]. FMR can also be used to study the coupling between FM films separated
by non-magnetic spacer layers, which can be metallic or non-metallic (for the non-metallic
spacer layers, see [28]). This serves as a prototype to study multilayer exchange coupling, an
1 Author to whom any correspondence should be addressed.
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important focus when investigating electric transport properties in multilayer structures. To
investigate this interaction, a technique is needed which allows us to measure the coupling
in absolute units (e.g. in eV/particle). Unlike many other experimental methods, which only
give a relative measure of the interaction, FMR was shown to yield absolute values [3]. To
investigate the coupling from a fundamental point of view, it is also important to be able to
construct the layered structure step-by-step in an ultrahigh vacuum (UHV) system.

In section 2 the principles of FMR in single (section 2.1) and coupled (section 2.2)
ultrathin films is reviewed. Section 3 presents the experimental results for trilayers of
Ni7Cux Co2/Cu(001) and Cu4Ni8Cux Ni9/Cu(001)2. The combination of FMR in coupled
systems and the use of a UHV environment is demonstrated. A detailed investigation of
the coupling as a function of the spacer thickness is presented in section 3.1. In section 3.2
it is shown via temperature-dependent measurements over a wide temperature regime that the
coupling exhibits a T 3/2 behaviour.

Another important quantity that can be addressed by FMR and is discussed in section 4 is
the g value, which in solids becomes a tensor quantity. Unlike in paramagnetic samples, for a
ferromagnet it is not only the external Zeeman field that affects the resonance condition. This
makes it much more difficult to measure the components of the g tensor. Section 4 explains an
experimental method which allows precise measurements of the g tensor components in FM
solids. Section 4.1 illustrates this method by discussing results for the in-plane component g‖
in the case of multilayered Fe/V samples.

2. FMR in ultrathin ferromagnets

2.1. FMR in single ultrathin films

Since the energy associated with microwave absorption lies in the µK range, FMR is the
technique of choice to investigate the thermodynamic ground-state properties. The theory for
FMR has been developed within a classical [1] and a quantum mechanical framework [4]. Due
the large number of spins taking part in a resonance experiment, of the order of 1010–1014,
both descriptions were shown to be equivalent [5]. It is therefore possible to describe the
resonance phenomenon by applying a macroscopic equation of motion for the behaviour of
the magnetization vector �M formed by the magnetic moments in the sample. If, in addition,
one considers single-domain magnetic films with thicknesses well below the ultrathin film
limit, �M can be assumed to be uniform throughout the sample. Within these assumptions, the
equation of motion first derived by Landau and Lifshitz is

d �M
dt

= −γ �M × ( �Hef f + �H0 + �hr f
)
. (1)

The expression on the right-hand side of equation (1) is the torque acting on the
magnetization �M which has been separated into parts arising due to the external ( �H0),
the internal ( �Hef f ) and the high-frequency (�hr f ) fields respectively. γ = gµB/h̄ is the
gyromagnetic ratio (γ /2π = 2.8 GHz kOe−1 for g = 2). Smit and Beljers have shown
that the equation of motion may be expressed in terms of the total free energy density F
instead of effective fields [6]. The first step is to calculate the equilibrium positions θ0, ϕ0 of
the magnetization for a given external field value. For this the total free energy density F has to
be a minimum, i.e. the equilibrium values can be obtained from the conditions ∂ F/∂θ = 0 and
∂ F/∂ϕ = 0. Assuming small deviations from the equilibrium positions due to the presence
of the driving radiofrequency (rf) field created by the microwaves with frequency ω, Smit and

2 In the following the film thickness in monolayers (ML) is given as a subscript.
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Beljers [6] derived a general formula which can be used to determine the resonance frequency
as a function of the external field, once the contributions to F have been specified.

(
ω

γ

)2

− (Fθθ Fϕϕ − F2
θϕ)

M2 sin2 θ0
= 0. (2)

The derivatives of F with respect to θ and ϕ have to be taken at the equilibrium positions
θ0 and ϕ0. For our systems of tetragonal symmetry, the free energy per unit volume is written
in the form

F = −M H0 cos(θ − θH ) +

(
2π M2 − K2⊥

)
cos2 θ − 1

2
K4⊥ cos4 θ

− 1
8 K4‖(3 + cos 4ϕ) sin4 θ − K2‖ cos2(ϕ − ϕu) sin2 θ (3)

θ and θH are the polar angles of the magnetization and the external field measured from the
film normal and ϕ and ϕH are the azimuthal angles measured with respect to the [100] in-plane
direction. K2⊥ gives the intrinsic out-of-plane anisotropy constant. A negative value indicates
an easy direction in the film plane, whereas a positive value shows a preferential direction
normal to the film plane. K2⊥ is created by the tetragonal distortion of the film. For cubic
systems such a contribution vanishes due to symmetry reasons. We will, however, show that all
systems discussed in this paper are tetragonally distorted due to their pseudomorphic growth.
K2‖, the in-plane uniaxial term, is usually very small and may result from a slight mis-cut of the
substrate which leads to a preferential direction in the film plane given by the angle ϕu. K4⊥ and
K4‖ are the fourfold in- and out-of-plane anisotropy constants respectively. For Ni films they
were shown to determine the continuous character of the reorientation transition of the easy axis
of magnetization from the in- to the out-of-plane direction which was found in the Ni/Cu(001)
system [2, 7]. The derivatives of equation (3) with respect to θ or ϕ are inserted into equation (2).
For the case that the field is rotated in the plane given by the in-plane [110]-direction and the
film normal, i.e. for the restriction ϕ0 = ϕH = 45◦, the following expression is derived(

ω

γ

)2

=
[

H0 cos �θ +

(
Me f f +

K4⊥
M

− K4‖
2M

)
cos 2θ0 +

(
K4⊥
M

+
K4‖
2M

)
cos 4θ0

]

×
[

H0 cos �θ +

(
Me f f +

K4⊥
M

− K4‖
2M

)
cos2 θ0

+

(
2K4⊥

M
+

K4‖
M

)
cos4 θ0 − 2K4‖

M

]
(4)

where �θ = θ0 − θH and Me f f = 2K2⊥/M − 4π M are used. Equation (4) can be used
to analyse out-of-plane angular dependence and shows that, except for K2‖, all anisotropy
constants influence the functional behaviour for the out-of-plane case.

2.2. FMR in coupled ultrathin films

This section explains how the analysis for a single film is extended to a trilayer consisting of
two magnetic layers which are separated by a paramagnetic spacer layer. The method of Smit
and Beljers can still be used in the case of coupled films to show its general character. The
coupling energy Uex of the two films 1 and 2 is added to the expression for F (equation (3))
via the term

Uex = −Jinter

�M1 · �M2

M1 M2
(5)



S468 J Lindner and K Baberschke

where Jinter is the interlayer coupling parameter. In equation (5), Jinter appears formally in the
same way as the Heisenberg-exchange integral describing the coupling between two individual
spins in one magnetic film. However, Jinter has to be distinguished from the temperature-
independent exchange constant within the Heisenberg interaction. It is, in fact, an averaged
macroscopic quantity which measures the energy difference between parallel and antiparallel
alignment of the two magnetizations �M1 and �M2. After introducing the coupling term via
equation (5) one gets from the Smit and Beljers method

(
ω

γ

)4

− b

(
ω

γ

)2

+ c = 0. (6)

Thus, for the coupled system one has a similar expression as for the single film
(equation (2)). The constants b and c are now given by

b = Fθ1θ1 Fϕ1ϕ1 − F2
θ1ϕ1

d2
1 M2

1 γ 2
2 sin2 θ0

1

+
Fθ2θ2 Fϕ2ϕ2 − F2

θ2ϕ2

d2
2 M2

2 γ 2
1 sin2 θ0

2

+ 2
Fθ1θ2 Fϕ1ϕ2 − Fθ1ϕ2 Fθ2ϕ1

d1d2 M1 M2γ1γ2 sin θ0
1 sin θ0

2

(7)

c = 1

d2
1 d2

2 M2
1 M2

2 sin2 θ0
1 sin2 θ0

2

[
F2

θ1θ2
F2

ϕ1ϕ2
+ F2

θ1ϕ1
F2

θ2ϕ2
+ F2

θ1ϕ2
F2

θ2ϕ1

− F2
θ1θ2

Fϕ1ϕ1 Fϕ2ϕ2 − F2
ϕ1ϕ2

Fθ1θ1 Fθ2θ2 − F2
θ2ϕ2

Fθ1θ1 Fϕ1ϕ1 − F2
θ1ϕ2

Fθ2θ2 Fϕ1ϕ1

− F2
θ2ϕ1

Fθ1θ1 Fϕ2ϕ2 + Fθ1θ1 Fϕ1ϕ1 Fθ2θ2 Fϕ2ϕ2 + 2Fθ1θ1 Fϕ1ϕ2 Fθ2ϕ2 Fθ2ϕ2

+ 2Fθ1ϕ1 Fθ1ϕ2 Fϕ1ϕ2 Fθ2θ2 + 2Fθ1θ2 Fθ1ϕ2 Fϕ1ϕ1 Fθ2ϕ2 + 2Fθ1θ2 Fθ1ϕ1 Fθ2ϕ1 Fϕ2ϕ2

− 2Fθ1ϕ1 Fθ2ϕ2

(
Fθ1θ2 Fϕ1ϕ2 + Fθ1ϕ2 Fθ2ϕ1

) − 2Fθ1θ2 Fϕ1ϕ2 Fθ1ϕ2 Fθ2ϕ1

]
. (8)

Despite its complex form, equation (6) allows us to analyse angular dependences for
coupled systems. The difference between the signals of two single films which are uncoupled
and a coupled system is shown in figure 1 for the special case that �H0 is applied in the film
plane. The solid lines indicate the signals of two slightly different magnetic films which do not
interact. This would be the situation for two films separated by an infinitely large spacer layer,
where both films have their individual resonance fields that can be described by equation (4).
When the spacer thickness is reduced, the two films become coupled. As shown by the
dashed lines, the coupled system presents two eigenmodes formed by the uniform modes of
the individual films. For the acoustical mode both magnetizations precess in-phase, whereas
for the weaker optical mode they rotate out-of-phase. The relative positions of optical and
acoustical mode can be used to identify the sign of Jinter , since figure 1 shows that for FM
(antiferromagnetic (AFM)) coupling the acoustical mode is located at higher (lower) fields than
the optical mode. Furthermore, the exact mode positions reflect the absolute value of Jinter

when they are analysed in the context of equation (6). The appearance of two eigenmodes
is similar to the case of two coupled pendula. This analogy also explains that, unless the
two magnetic films are identical (see below), both eigenmodes have resonance fields which
are different from the ones for the uncoupled films. Moreover, it is important to note that
the coupled modes do not belong to one film only. They merely arise from both magnetic
layers. Figure 1 further shows that for larger values of Jinter the intensity ratio between optical
and acoustical mode decreases (dotted curves)—independent of its sign. This means that with
increasing Jinter more oscillator strength is coupled to the acoustical mode, while the oscillator
strength for the optical mode becomes weaker.

Figure 1 shows an alternative way of deducing Jinter . Compared to the uncoupled Hres

values, both modes move towards higher (lower) field values within the coupled system for
AFM (FM) coupling. This shift can also be taken as a measure of Jinter , provided that at least
one Hres value for Jinter = 0 is known. The advantage of this method is that it is no longer
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Figure 1. Simulation of the FMR signals according to equation (6) for two uncoupled ultrathin
films (solid curves) and for the same films after FM and AFM coupling has been introduced (dashed
curves). The dotted curves show the spectra after the coupling has been doubled.

important to observe both modes in the coupled system. This is particularly useful for strong
coupling, where the optical mode becomes weaker and is therefore not always observable.

Finally, the case of two identical magnetic layers is discussed; this case is easily explained
via the analogy of the coupled pendula. If both pendula are identical, no force is exerted on the
pendula by the coupling spring during the in-phase oscillation, so that the oscillation frequency
is unchanged from that of the single pendulum. Thus, in the trilayer the acoustical mode would
stay unaltered and present the same Hres as the single individual layers, whereas the Hres of
the optical mode would still be changed.

3. Interlayer coupling: absolute determination of Jinter using in situ FMR

In the following we show how in situ FMR can be used to investigate trilayer systems by apply-
ing the second method explained in the previous section. This approach allows us to measure
and thus compare the same film before and after the deposition of each layer. We explain this
procedure via a specific example of a Cu4Ni8Cu5Ni9/Cu(001) trilayer. The first step is to evap-
orate the bottom 9 ML thick Ni film already capped with 5 ML of Cu. Details concerning the
film preparation and the well known epitaxial growth of the Ni/Cu(001) system may be found
elsewhere [8–10]. The dashed curve in figure 2(a) shows the signal of the Cu5Ni9 film measured
along the in-plane direction, i.e. at θH = 90◦ (for better clarity only part of the full resonance
signal is displayed). Figure 2(b) shows the complete angular dependence of Hres measured
for this film at T = 294 K before (dashed curve) and (solid curve) after capping with 5 ML of
Cu. One sees that the minimum for Hres occurs at θH = 90◦ for the bare Ni film, whereas after
depositing Cu on the same film the minimum is shifted to θH = 0◦. This indicates that the easy
direction of magnetization has switched from being in the film plane towards the film normal.
This effect is explained by a shift of the reorientation transition for the Ni/Cu(001) system upon
changing the topmost surface due to the presence of an overlayer. Details of this effect are dis-
cussed in [11]. By fitting the angular dependences in figure 2(b) to equation (4), all anisotropy
constants can be obtained. The switching of the easy axis of magnetization can be seen in the
change of sign observed for Me f f . The fourth-order constants were found to have negative
signs. This indicates an in-plane easy axis along the [110] direction and is well known for the
Ni/Cu(001) system in this thickness range. For our Ni thicknesses the values of the fourth-order
terms are, however, by a factor of 10 smaller than the perpendicular term, so that they are ne-
glected (for the fundamental importance of higher-order constants for the Ni/Cu(001) system,
see [2, 7, 12]). Now, knowing the anisotropies of the Cu capped Ni film, we will, in the next
step, deposit a second Ni film on top. The resulting FMR spectrum for the trilayer measured
at room temperature is shown as a thick solid curve in figure 2(a). In the trilayer one observes
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Figure 2. (a) FMR spectra for Cu5Ni9/Cu(001) before (dashed curve) and after depositing the
topmost Cu4Ni8 layers. (b) Angular dependence for Cu5 Ni9/Cu(001) with (solid curve) and without
(dashed curve) a Cu cap layer. (c) Angular dependence measured for optical (open squares) and
acoustical (solid squares) modes in the Cu4Ni8Cu5Ni9/Cu(001) trilayer. The dashed curve is the
same dependence shown in (b) for the Cu-capped bottom film only.

two resonances. The larger acoustical mode with resonance field H a
res is located at higher

fields with respect to the optical mode (H o
res) and thus the system is coupled ferromagnetically.

This is confirmed by the polar MOKE results from the same trilayer shown in the inset. One
observes a rectangular loop indicating that the two magnetizations flip together due to their FM
coupling. Besides the sign of the coupling, however, the Kerr effect does not allow us to deduce
the value of Jinter . In addition, H a

res is shifted to lower fields with respect to that of the bottom
film (dashed curve). This situation has to be compared with the FM case of figure 1, thus
also indicating the FM coupling. To unambiguously extract Jinter from the field shift or from
the two mode positions, one needs to know the anisotropy values for the two Ni films, since
they influence the shift and thus the positions. The values for the first film have already been
determined. Figure 2(c) shows how the K values of the topmost Cu4Ni8 film are determined
from the full angular dependence in the coupled system. The experimental values of the optical
(open squares) and acoustical mode (solid squares) are shown together with a fit according to
equation (6). One obtains a value of 1.136 kG for Me f f , which is smaller than that found for the
bottom film due to the lower thickness of the topmost layer. The positive value also indicates
that the topmost film has an easy axis along the film normal. It is interesting to note that the
angular dependence in coupled trilayers is in principle different from that known from single
films. If the two films were uncoupled their different anisotropies would imply that one film
has the larger Hres along the hard direction, but also the smaller Hres along the easy axis. This
would then lead to a crossing of the two angular dependences at a particular angle. The depen-
dences of optical and acoustical modes, however, do not cross, i.e. for all θH values the optical
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Figure 3. Jinter as a function of the spacer thickness dCu.

mode is located at lower Hres values reflecting the FM coupling of the films. Taking the angular
dependences of the bottom film only and the one measured in the coupled system, all unknown
values influencing the Hres of optical and acoustical modes can be eliminated. Then, the only
parameter left which determines the shift is Jinter itself. This straightforward way of deter-
mining the coupling in absolute units demonstrates the tremendous advantage of measuring in
situ and thus yields a very precise measure of Jinter . In the following, we discuss parameters
that influence Jinter and can be used to tune the coupling between two magnetic layers.

3.1. Jinter as a function of the spacer thickness

In figure 3, Jinter is plotted in absolute units as a function of the spacer thickness for
Cu/Ni/Cu/Ni/Cu(001) (squares) and Ni/Cu/Co/Cu(001) (open circles) trilayers. Positive values
of Jinter indicate FM, negative values AFM coupling. Note that the right axis corresponds to
the Ni/Cu/Co/Cu(001) system for which much larger coupling is found. One clearly sees an
oscillatory behaviour of Jinter as a function of the spacer thickness which is attenuated for
larger dCu. According to the theory of Bruno [13] one can write the coupling as

Jinter

Jinter,0
∼ 1

d2
Cu

∑
j

sin(ks
j · dCu + φ j ). (9)

Here Jinter,0 is the value of Jinter at T = 0 K, the ks
j give the oscillation periods, φ j are

the phases and dCu is the spacer thickness. Equation (9) shows that the oscillation periods of
the coupling depend only on the characteristics of the Fermi surface of the spacer material and
are given by extremal spanning vectors of the Fermi surface ks

j [13, 14]. For Cu(001), periods
of 2.56 and 5.88 ML are predicted. The solid line in figure 3 is the predicted curve using
these two periods and phases for Cu(001). Note that the only adjustable parameters which
were scaled to match the absolutely measured data points are the two amplitudes giving the
strength of the coupling. Thus, FMR provides an important tool to correlate experimental data
with theoretical work which usually does not provide the amplitudes of the oscillations. The
open triangles are results for Co/Cu/Ni/Cu(001) trilayers taken from [15]. The results were
obtained using x-ray magnetic circular dichroism (XMCD). Due to the excitation of localized
2p electrons into the exchange split 3d bands, XMCD is element-specific and allows us to
measure the magnetization curves of the two FM layers separately [15]. Upon depositing the
topmost Co layer, the coupling leads to a shift of T Ni

C to higher values from which Jinter can
be deduced. Since this analysis provides only relative values, a simple mean-field approach
was used in [15] to translate the TC shift into absolute values of Jinter . This procedure results,
however, in values which are about two orders of magnitude too large so that it was necessary
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to scale the XMCD data in figure 3 on the y axis to match the correct values obtained by
FMR. Figure 3 shows that after this scaling the results from both techniques are in excellent
agreement concerning the oscillatory behaviour.

3.2. Temperature dependence of Jinter

The difference between Jinter and a Heisenberg exchange can be seen from the fact that it is
strongly temperature dependent. Since Jinter measures the coupling strength, it is all important
to understand the mechanisms which leads to its temperature dependence. In a previous
experiment [16] the temperature dependence of Jinter of Co/Ru/Co trilayers was determined
only within a very small range in reduced temperature t = T/TC . Here we will show that it
is important to measure over a large temperature range, if possible from T = 0 K up to the
Curie temperature. Above TC no ferromagnetism exists and, consequently, no coupled spin
wave excitations are possible.

There exist, basically, the following two different mechanisms to explain the temperature
dependence of the interlayer coupling.

(i) Thermally excited spin waves in the magnetic layers lead to a reduction of the effective
interlayer exchange [17]. In this model the characteristic temperature defining the temperature
dependence is given by TC , and Jinter as a function of T has the form

Jinter

Jinter,0
= 1 − a

(
T

TC

)3/2

(10)

where a is of order unity [17].
(ii) Thermal excitations of electron–hole pairs across the Fermi level in the spacer

material [13, 18] are described by the rounding of the Fermi–Dirac distribution function at
elevated temperatures which leads to a decrease of the effective coupling between the magnetic
layers given by

Jinter

Jinter,0
= T/T0

sinh
(

T
T0

) (11)

where T0 = (h̄vF )/(2πkBd) is the value which determines the functional behaviour. vF ,
the only temperature-dependent quantity within T0, is the Fermi velocity of the carriers in
the spacer with thickness d . In this model the coupling does not vanish necessarily at the
Curie temperature TC . Large Fermi velocities vF , i.e. large T0 values, decrease the effective
temperature dependence. Since, in particular for noble metal spacers, vF is quite large (about
108 cm s−1) only a small temperature dependence in the range 1–1000 K can be expected.
Another quantity which does not enter explicitly into model (i) is d . According to model (ii)
larger spacer thicknesses lead to a more pronounced temperature dependence. Both models
will now be compared with our experimental results for Ni7Cux Co2/Cu(001) trilayers with
x = 5, 9 ML. From figure 3 it can be seen that the trilayer with x = 5 ML is coupled
ferromagnetically, whereas the trilayer with x = 9 ML is coupled antiferromagnetically. The
FMR spectra of the trilayer with x = 9 ML for the lowest temperature of T = 55 K and for
room temperature measured along the in-plane [110] direction are presented in figures 4(c)
and (d). The dotted spectra result from the bottom Co film already being capped with the Cu
spacer. Since Hres is located at low field values, the magnetization lies in the film plane. The
shift of Hres to higher fields at room temperature is due to the reduction of the anisotropies. In
the spectrum for the trilayer at T = 55 K, the shift of the resonance to larger fields indicates the
AFM coupling. However, due to the strong coupling only the acoustical mode is observable.
The possibility to still determine Jinter shows the advantage of the in situ approach. At room
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Figure 4. (a) Jinter as a function of T 3/2 for Ni7Cux Co2/Cu(001) trilayers with x = 5, 9.
(b) Temperature dependence shown in (a) normalized to the value of Jinter at T = 0 K. (c) and
(d) Spectra at T = 55 and 294 K respectively.

temperature both modes appear, indicating that Jinter is reduced. The complete temperature
dependence of Jinter is displayed in the left panel of figure 4 where Jinter is plotted as a function
of T 3/2 for the two cases. In (a) absolute units and in (b) Jinter normalized to the extrapolated
T = 0 K value are shown. For both trilayers one can clearly see a linear dependence over
a wide temperature range. In addition, it was shown in [20] that a fit according to model (ii)
shows reasonable agreement only if unrealistic small values for vF are used. The best fit shown
by the dashed line in figure 4 is obtained for vF = 1.4 × 107 cm s−1 which is by a factor of
10 smaller than the free electron value for Cu bulk (vF = 1.57 × 108 cm s−1) and still by a
factor of five smaller than realistic values determined experimentally by de Haas–van Alphen
measurements yielding vF = 6.7 × 107 cm s−1 [19]. Thus, for both systems the main source
of the temperature dependence in Jinter results from spin wave excitations. Model (i) was even
shown to hold for a multilayered Fe/V structure as discussed in [20]. Besides the fact that
both systems in figure 4 show a linear behaviour in the T 3/2 plot, a difference between the
two trilayers is observed. One finds that the temperature dependence, despite being linear, is
stronger for the trilayer with the larger spacer thickness, as can be seen in (b). Model (i) does
not give an explanation for this behaviour, whereas model (ii) explicitly predicts this trend.
This experimental finding thus shows that more theoretical work is needed to understand such
a dependence on the spacer thickness within model (i). In particular, the origin of the constant
a, which is not discussed in [17], needs to be specified.

4. Orbital magnetism: determination of the g value in FM ultrathin films

In the following, a method is explained that allows us to determine the g value in FM samples.
The g value can be related to the ratio of orbital to spin moment via [21]

µL

µS
= g − 2

2
. (12)
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Thus, the departure from g = 2 is a measure of the orbital contribution. Moreover, once
the total moment µ = µL +µS is measured (e.g. via SQUID [22]), one can determine µL . The
quenching of the orbital momentum in cubic symmetry leads to g values very close to g = 2.
Lower crystallographic symmetry and spin–orbit coupling reinstalls orbital magnetism,leading
to g � 2 for more than half-filled 3d elements. It is well known that for the bulk ferromagnets
Fe, Co and Ni the g values are gFe = 2.09, gCo = 2.18 and gNi = 2.21 (see also [29]). In
addition, the lower symmetry of the crystal field results in the fact that in a solid the g value in
general becomes a tensor quantity. g becomes a symmetrical tensor of second rank with gx ,
gy and gz being the principal values. For tetragonal, trigonal and any kind of axial symmetry,
gx = gy = g‖ and gz = g⊥. For cubic symmetry g⊥ = g‖, so that for bulk Fe and Ni the
g tensor is isotropic. In thin films, the deviation of the crystallographic structure from cubic
symmetry is caused by the pseudomorphic growth leading to a lower symmetry.

At first glance, the determination of the g value in ultrathin FM films seems to be
straightforward. By fitting angular-dependent measurements to equation (4) the gyromagnetic
ratio γ and thus g can be obtained. The disadvantage of this method, however, is that the
anisotropy constants also have to be fitted at the same time. A way to solve this problem is to
combine both angular dependences at different microwave frequencies. Then, all anisotropy
constants can be determined independently. However, this approach is also problematic, since
the uncertainty of the anisotropies enters into the determination of g. A way to circumvent
this problem was discussed in [23].

The resonance condition of a tetragonal system given by equation (4) for the in-plane
[110] direction takes the form(

ω

γ‖

)2

= H 2
0‖ + H0‖

(
Me f f − K4‖

M

)
− 2

K4‖
M

(
Me f f +

K4‖
M

)
. (13)

For the in-plane [100] direction the only difference is that the K4‖/M terms on the right-
hand side of the equation have to be replaced by +4K4‖/M (first brackets), +2K4‖/M (before
second brackets) and +2K4‖/M (last brackets). For the perpendicular configuration one obtains
from equation (4)

ω

γ⊥
= H0⊥ +

(
Mef f + 2

K4⊥
M

)
. (14)

The two dependences are illustrated schematically in figure 5(a), where f 2 as a function
of H0‖ and f as function of H0⊥ are plotted. A parabolic behaviour is expected for the
in-plane components g‖,[110] and g‖,[100] while the perpendicular component g⊥ follows a
linear dependence. By using several frequencies, the experimental points can be fitted to
equations (13) and (14). As a result, the only parameter that influences the slope for the
perpendicular orientation and the prefactor of the term quadratic in H0‖ for the in-plane
directions is the gyromagnetic ratio, i.e. g. Consequently, g can be determined independently
of the anisotropy values.

4.1. g‖ in Fe/V superlattices

To illustrate the multifrequency approach, we will discuss results for prototype 3d-based
Fen /Vm superlattices (SLs) with n = 2, 4 and m = 2, 4, 5. Fen /Vm SL can be grown with
very high structural [24] as well as magnetic homogeneity [25] in bcc(001) orientation on
MgO substrates. The growth proceeds in a 2D Frank–Van der Merve fashion resulting in
sharp interfaces with a typical roughness of only 2 Å. A RHEED investigation revealed an
in-plane cubic structure. The Fe/V system presents an average out-of-plane lattice constant of
about 2.9 Å which increases with increasing content of V. This value lies in-between the one
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Figure 5. (a) Theoretical behaviour f 2(H0‖) along the in-plane directions and f (H0⊥) for the
perpendicular orientation. (b) Schematic drawing of a Fe/V SL.

for bulk Fe (2.87 Å) and V (3.03 Å) and thus the magnetic Fe layers are slightly expanded
along the out-of-plane direction leading to a tetragonal symmetry. Since SLs with thin Fe
layers are expected to differ most from bulk properties, we have investigated a (Fe4/V4)45 SL,
a (Fe4/V2)60 SL and a (Fe2/V5)50 SL. Therefore, we can discuss the influence of decreasing the
Fe thickness as well as the effect of decreasing the V thickness. Before discussing the g-value
measurements, we briefly discuss at this point the important features of the three samples.
A detailed presentation of the FMR measurements concerning the anisotropy values will be
given elsewhere [26].

(i) Coupling between the Fe layers. The coupling between the Fe layers was found to be
FM for all the three samples as consistently shown by XMCD [27], FMR and vibrating
sample magnetometry (VSM). As shown for the special case of the trilayer in section 2.2,
the coupling between the magnetic layers does not alter the resonance field of the acoustical
mode compared to the resonance fields of the single magnetic layers for the case where
the individual layers are identical. In addition, the intensity of the acoustical mode is
large, whereas for identical layers the optical mode intensity is zero. Translated to the
Fe/V SL, one expects a strong acoustical mode which reflects the collective coherent
precession of the layers. Since each layer means one degree of freedom, N − 1 optical
modes are possible, N being the repetition of the SL period. However, the SL periods
are nominally the same, so that ideally no intensity should be coupled with the optical
modes. Indeed, only one mode was found at low frequencies. Only at frequencies larger
than 17 GHz could small optical modes be observed. This finding implies that the SLs
consist of almost perfectly symmetric SL periods and that one can analyse the acoustical
mode by equation (4), i.e. via the equation derived for a single magnetic layer.

(ii) Coupling between Fe and V. It was shown via XMCD that the V layers also carry a
magnetic moment in the Fe/V system [27]. Details of the XMCD measurements and the
data analysis are presented in [27]. The separate determination of only the Fe magnetic
moments can be done via XMCD with the help of the so-called sum rules. This procedure
is well established for Fe. For V, however, the application of the sum rules is questionable
because of the small spin–orbit splitting of the initial 2p core levels which leads to an
considerable overlapping of the signal at the L2 and L3 edge. Thus, the V moments were
deduced by taking the total moment obtained from VSM measurement and subtracting the
Fe moments. The results are summarized in table 1. It can be seen that the total Fe (µFe)
and V (µV) moments are aligned antiparallel for all samples, consistent with theory (this
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Table 1. Total magnetic moments and the ones for Fe and V only for the different Fe/V samples
from [27] given in µB /atom. The g value of the (Fe2/V5)50 SL results are from [23].

Sample µtot µFe µV g‖,[110] g‖,[100]

40 nm Fe 2.22
(Fe4/V2)60 1.59 2.12 −1.06 2.115(7) 2.109(12)
(Fe4/V4)45 1.28 1.70 −0.42 2.134(9) 2.136(16)
(Fe2/V5)50 0.67 1.34 −0.27 2.264(15)

is indicated by the negative sign of µV). Moreover, it was shown in [27] that, although the
spin moments of the Fe and V layers are oriented antiparallel, the orbital moments are all
aligned parallel. The directions of orbital and spin magnetic moments within the different
layers are indicated by arrows in figure 5(b) where a hard sphere model of a Fe/V SL is
schematically shown.

The induced magnetism in V has consequences in analysing the FMR data, since the V
layers also participate in the FMR in the Fe/V system. As a result, the two antiferromagnetically
coupled sublattice magnetizations MFe = nFeµFe and MV = nVµV precess together about the
effective field direction, i.e. the system behaves as a ferrimagnet. Since the V and Fe layers are
in direct contact, the coupling is much stronger than the weak interlayer coupling discussed in
section 3. Thus, only the in-phase precession can be excited in the microwave regime, whereas
the out-of-phase mode usually is observed in the far-infrared region. It is important to note that
the in-phase mode which is of relevance here can still be described by equation (1) when one
replaces M by the net magnetization of the two sublattices and g by an effective gef f value.
In this so-called ‘FM limit’, the ferrimagnetic system can thus be described as a ferromagnet
with gef f given by

nFeµFe + nVµV

gef f
= nFeµFe

gFe
+

nVµV

gV
. (15)

The FMR results of gef f for the different Fe/V SLs will now be discussed. Figure 6(a)
shows FMR spectra for the (Fe4/V2)60 and (Fe4/V4)45 SLs for three different frequencies.
One sees that with increasing frequency the resonance fields also become larger. The same
trend is found for the (Fe2/V5)50 SL. The results for this SL are taken from a previous
measurement presented in [23] and are shown for two frequencies in figure 6(b). Upon
plotting the frequencies squared as a function of the resonance fields for all frequencies as
discussed in figure 5(a), one ends up with the result shown in figure 6(c). The result for
the (Fe2/V5)50 SL is plotted separately in the inset. One should note that in [23] only three
different frequencies were available, whereas for the two other SLs seven different frequencies
were used. One can see that this large range in frequency makes it possible to distinguish
between the two samples. In particular at high-frequency values the resonance fields become
significantly different from each other. As a consequence, the error in determining the g
factor becomes much smaller. The fit according to equation (13), which shows a very good
agreement with the data,yields the values for g‖,[110]. The results are summarized in table 1. By
decreasing the Fe thickness and increasing the V thickness, g‖,[110] also becomes progressively
larger, indicating a larger ratio of orbital to spin magnetic moment. In [27] it was shown
that this is most likely due to hybridization which influences both spin and orbital moment,
when decreasing the Fe thickness. The orbital contribution, however, is not strongly affected
because of its unquenching at small Fe thicknesses which leads to a partial compensation
of the hybridization effect. Within the experimental error, no difference was found for the
other in-plane component g‖,[100], also given in table 1. As stated above, this is expected for
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Figure 6. (a) and (b) FMR spectra for the Fe/V SLs at various frequencies. (c) Frequency squared
as a function of H0‖ applied parallel to the [110] direction. (d) Ratio of orbital to spin magnetic
moment measured via FMR and XMCD.

tetragonal symmetry. Figure 6(d) shows µL/µS for the different samples obtained from the
g‖,[110] values by using equation (12). Together with the results from FMR, µL/µS for Fe
only as obtained from XMCD measurements on the same samples are shown. XMCD reveals
that all samples present an enhanced orbital magnetism. While the (Fe4/V2)60 shows a nearly
bulk-like behaviour (dotted curve), the (Fe2/V5)50 presents an orbital contribution of about 9%
compared to 4.5% in bulk Fe. In addition, the FMR values lie systematically above the ones
found via XMCD. This is the consequence of the fact that the orbital moments of the Fe and V
layers add up, whereas the spin moments partially cancel out (see figure 5(b)). This shows that
for systems with polarizable elements one has to take the response of the induced moments
into account, i.e. the g values measured via FMR are given by equation (15).
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